下载APP
关闭
讲堂
客户端下载
兑换中心
企业版
渠道合作
推荐作者

50 | 推荐系统(下):如何通过SVD分析用户和物品的矩阵?

2019-04-10 黄申
程序员的数学基础课
进入课程

讲述:黄申

时长09:13大小8.45M

你好,我是黄申。

上一节,我们讲了如何使用矩阵操作,实现基于用户或者物品的协同过滤。实际上,推荐系统是个很大的课题,你可以尝试不同的想法。比如,对于用户给电影评分的案例,是不是可以使用 SVD 奇异值的分解,来分解用户评分的矩阵,并找到“潜在”的电影主题呢?如果在一定程度上实现这个目标,那么我们可以通过用户和主题,以及电影和主题之间的关系来进行推荐。今天,我们继续使用 MovieLens 中的一个数据集,尝试 Python 代码中的 SVD 分解,并分析一些结果所代表的含义。

SVD 回顾以及在推荐中的应用

在实现 SVD 分解之前,我们先来回顾一下 SVD 的主要概念和步骤。如果矩阵 X 是对称的方阵,那么我们可以求得这个矩阵的特征值和特征向量,并把矩阵 X 分解为特征值和特征向量的乘积。

假设我们求出了矩阵 Xn 个特征值 λ1λ2λn,以及这 n 个特征值所对应的特征向量 v1v2vn,那么矩阵 X 可以表示为:

X=VΣV1

其中,V 是这 n 个特征向量所张成的 n×n 维矩阵,而 Σ 是这 n 个特征值为主对角线的 n×n 维矩阵。这个过程就是特征分解(Eigendecomposition)。

如果我们会把 V 的这 n 个特征向量进行标准化处理,那么对于每个特征向量 Vi,就有 ||Vi||2=1,而这表示 ViVi=1,此时 Vn 个特征向量为标准正交基,满足 VV=I, 也就是说,V 为酉矩阵,有 V=V1 。这样一来,我们就可以把特征分解表达式写作:

X=VΣV

可是,如果矩阵 X 不是对称的方阵,那么我们不一定能得到有实数解的特征分解。但是,SVD 分解可以避免这个问题。

我们可以把 X 的转置 XX 做矩阵乘法,得到一个 n×n 维的对称方阵 XX,并对这个对称方阵进行特征分解。分解的时候,我们得到了矩阵 XXn 个特征值和对应的 n 个特征向量 v,其中所有的特征向量叫作 X 的右奇异向量。通过所有右奇异向量我们可以构造一个 n×n 维的矩阵 V

类似地,如果我们把 XX 做矩阵乘法,那么会得到一个 m×m 维的对称方阵 XX。由于 XX 也是方阵,因此我们同样可以对它进行特征分解,并得到矩阵 XXm 个特征值和对应的 m 个特征向量 u,其中所有的特征向量向叫作 X 的左奇异向量。通过所有左奇异向量我们可以构造一个 m×m 的矩阵 U

现在,包含左右奇异向量的 UV 都求解出来了,只剩下奇异值矩阵 Σ 了。Σ 除了对角线上是奇异值之外,其他位置的元素都是 0,所以我们只需要求出每个奇异值 σ 就可以了。之前我们已经推导过,σ 可以通过两种方式获得。第一种方式是计算下面这个式子:

σi=Xviui

其中 viui 都是列向量。一旦我们求出了每个奇异值 σ,那么就能得到奇异值矩阵 Σ

第二种方式是通过 XX 矩阵或者 XX 矩阵的特征值之平方根,来求奇异值。计算出每个奇异值 σ,那么就能得到奇异值矩阵 Σ 了。

通过上述几个步骤,我们就能把一个 mxn 维的实数矩阵,分解成 X=UΣV 的形式。那么这种分解对于推荐系统来说,又有怎样的意义呢?

之前我讲过,在潜在语义分析 LSA 的应用场景下,分解之后所得到的奇异值 σ,对应一个语义上的“概念”,而 σ 值的大小表示这个概念在整个文档集合中的重要程度。U 中的左奇异向量表示了每个文档和这些语义“概念”的关系强弱,V 中的右奇异向量表示每个词条和这些语义“概念”的关系强弱。

最终,SVD 分解把原来的“词条 - 文档”关系,转换成了“词条 - 语义概念 - 文档”的关系。而在推荐系统的应用场景下,对用户评分矩阵的 SVD 分解,能够帮助我们找到电影中潜在的“主题”,比如科幻类、动作类、浪漫类、传记类等等。

分解之后所得到的奇异值 σ 对应了一个“主题”,σ 值的大小表示这个主题在整个电影集合中的重要程度。U 中的左奇异向量表示了每位用户对这些“主题”的喜好程度,V 中的右奇异向量表示每部电影和这些“主题”的关系强弱。

最终,SVD 分解把原来的“用户 - 电影”关系,转换成了“用户 - 主题 - 电影”的关系。有了这种新的关系,即使我们没有人工标注的电影类型,同样可以使用更多基于电影主题的推荐方法,比如通过用户对电影主题的评分矩阵,进行基于用户或者电影的协同过滤。

接下来,我会使用同样一个 MovieLens 的数据集,一步步展示如何通过 Python 语言,对用户评分的矩阵进行 SVD 分解,并分析一些结果的示例。

Python 中的 SVD 实现和结果分析

和上节的代码类似,首先我们需要加载用户对电影的评分。不过,由于非并行 SVD 分解的时间复杂度是 3 次方数量级,而空间复杂度是 2 次方数量级,所以对硬件资源要求很高。这里为了节省测试的时间,我增加了一些语句,只取大约十分之一的数据。

import pandas as pd
from numpy import *
# 加载用户对电影的评分数据
df_ratings = pd.read_csv("/Users/shenhuang/Data/ml-latest-small/ratings.csv")
# 获取用户的数量和电影的数量,这里我们只取前 1/10 来减小数据规模
user_num = int(df_ratings["userId"].max() / 10)
movie_num = int(df_ratings["movieId"].max() / 10)
# 构造用户对电影的二元关系矩阵
user_rating = [[0.0] * movie_num for i in range(user_num)]
i = 0
for index, row in df_ratings.iterrows(): # 获取每行的 index、row
# 由于用户和电影的 ID 都是从 1 开始,为了和 Python 的索引一致,减去 1
userId = int(row["userId"]) - 1
movieId = int(row["movieId"]) - 1
# 我们只取前 1/10 来减小数据规模
if (userId >= user_num) or (movieId >= movie_num):
continue
# 设置用户对电影的评分
user_rating[userId][movieId] = row["rati
复制代码

之后,二维数组转为矩阵,以及标准化矩阵的代码和之前是一致的。

# 把二维数组转化为矩阵
x = mat(user_rating)
# 标准化每位用户的评分数据
from sklearn.preprocessing import scale
# 对每一行的数据,进行标准化
x_s = scale(x, with_mean=True, with_std=True, axis=1)
print(" 标准化后的矩阵:", x_s
复制代码

Python 的 numpy 库,已经实现了一种 SVD 分解,我们只调用一个函数就行了。

# 进行 SVD 分解
from numpy import linalg as LA
u,sigma,vt = LA.svd(x_s, full_matrices=False, compute_uv=True)
print("U 矩阵:", u)
print("Sigma 奇异值:", sigma)
print("V 矩阵:", vt)
复制代码

最后输出的 Sigma 奇异值大概是这样的:

Sigma 奇异值: [416.56942602 285.42546812 202.25724866 ... 79.26188177 76.35167406 74.96719708]
复制代码

最后几个奇异值不是 0,说明我们没有办法完全忽略它们,不过它们相比最大的几个奇异值还是很小的,我们可以去掉这些值来求得近似的解。

为了验证一下 SVD 的效果,我们还可以加载电影的元信息,包括电影的标题和类型等等。我在这里使用了一个基于哈希的 Python 字典结构来存储电影 ID 到标题和类型的映射。

# 加载电影元信息
df_movies = pd.read_csv("/Users/shenhuang/Data/ml-latest-small/movies.csv")
dict_movies = {}
for index, row in df_movies.iterrows(): # 获取每行的 index、row
dict_movies[row["movieId"]] = "{0},{1}".format(row["title"], row["genres"])
print(dict_movies)
复制代码

我刚刚提到,分解之后所得到的奇异值 σ 对应了一个“主题”,σ 值的大小表示这个主题在整个电影集合中的重要程度,而 V 中的右奇异向量表示每部电影和这些“主题”的关系强弱。所以,我们可以对分解后的每个奇异值,通过 V 中的向量,找找看哪些电影和这个奇异值所对应的主题更相关,然后看看 SVD 分解所求得的电影主题是不是合理。比如,我们可以使用下面的代码,来查看和向量 Vt1, 相关的电影主要有哪些。

# 输出和某个奇异值高度相关的电影,这些电影代表了一个主题
print(max(vt[1,:]))
for i in range(movie_num):
if (vt[1][i] > 0.1):
print(i + 1, vt[1][i], dict_movies[i + 1])
复制代码

需要注意的是,向量中的电影 ID 和原始的电影 ID 差 1,所以在读取 dict_movies 时需要使用 (i + 1)。这个向量中最大的分值大约是 0.173,所以我把阈值设置为 0.1,并输出了所有分值大于 0.1 的电影,电影列表如下:

0.17316444479201024
260 0.14287410901699643 Star Wars: Episode IV - A New Hope (1977),Action|Adventure|Sci-Fi
1196 0.1147295905497075 Star Wars: Episode V - The Empire Strikes Back (1980),Action|Adventure|Sci-Fi
1198 0.15453176747222075 Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981),Action|Adventure
1210 0.10411193224648774 Star Wars: Episode VI - Return of the Jedi (1983),Action|Adventure|Sci-Fi
2571 0.17316444479201024 Matrix, The (1999),Action|Sci-Fi|Thriller
3578 0.1268370902126096 Gladiator (2000),Action|Adventure|Drama
4993 0.12445203514448012 Lord of the Rings: The Fellowship of the Ring, The (2001),Adventure|Fantasy
5952 0.12535012292041953 Lord of the Rings: The Two Towers, The (2002),Adventure|Fantasy
7153 0.10972312192709989 Lord of the Rings: The Return of the King, The (2003),Action|Adventure|Drama|Fantasy
复制代码

从这个列表可以看出,这个主题是关于科幻或者奇幻类的动作冒险题材。

使用类似的代码和同样的阈值 0.1,我们来看看和向量 Vt5, 相关的电影主要有哪些。

# 输出和某个奇异值高度相关的电影,这些电影代表了一个主题
print(max(vt[5,:]))
for i in range(movie_num):
if (vt[5][i] > 0.1):
print(i + 1, vt[5][i], dict_movies[i + 1])
复制代码

电影列表如下:

0.13594520920117012
21 0.13557812349701226 Get Shorty (1995),Comedy|Crime|Thriller
50 0.11870851441884082 Usual Suspects, The (1995),Crime|Mystery|Thriller
62 0.11407971751480048 Mr. Holland's Opus (1995),Drama
168 0.10295400456394468 First Knight (1995),Action|Drama|Romance
222 0.12587492482374366 Circle of Friends (1995),Drama|Romance
261 0.13594520920117012 Little Women (1994),Drama
339 0.10815473505804706 While You Were Sleeping (1995),Comedy|Romance
357 0.11108191756350501 Four Weddings and a Funeral (1994),Comedy|Romance
527 0.1305895737838763 Schindler's List (1993),Drama|War
595 0.11155774544755555 Beauty and the Beast (1991),Animation|Children|Fantasy|Musical|Romance|IMAX
复制代码

从这个列表可以看出,这个主题更多的是关于剧情类题材。就目前所看的两个向量来说,SVD 在一定程度上区分了不同的电影主题,你也可以使用类似的方式查看更多的向量,以及对应的电影名称和类型。

总结

在今天的内容中,我们回顾了 SVD 奇异值分解的核心思想,解释了如何通过 XXXX 这两个对称矩阵的特征分解,求得分解后的 U 矩阵、V 矩阵和 Σ 矩阵。另外,我们也解释了在用户对电影评分的应用场景下,SVD 分解后的 U 矩阵、V 矩阵和 Σ 矩阵各自代表的意义,其中 Σ 矩阵中的奇异值表示了 SVD 挖掘出来的电影主题,U 矩阵中的奇异向量表示用户对这些电影主题的评分,而 V 矩阵中的奇异向量表示了电影和这些主题的相关程度。

我们还通过 Python 代码,实践了这种思想在推荐算法中的运用。从结果的奇异值和奇异向量可以看出,SVD 分解找到了一些 MovieLens 数据集上的电影主题。这样我们就可以把用户针对电影的评分转化为用户针对主题的评分。由于主题通常远远小于电影,所以 SVD 的分解也帮助我们实现了降低特征维度的目的。

SVD 分解能够找到一些“潜在的“因素,例如语义上的概念、电影的主题等等。虽然这样操作可以降低特征维度,去掉一些噪音信息,但是由于 SVD 分解本身的计算量也很大,所以从单次的执行效率来看,SVD 往往无法起到优化的作用。在这种情况下,我们可以考虑把它和一些监督式的学习相结合,使用一次分解的结果构建分类器,提升日后的执行效率。

思考题

刚才 SVD 分解实验中得到的 U 矩阵,是用户对不同电影主题的评分矩阵。请你使用这个 U 矩阵,进行基于用户或者基于主题(物品)的协同过滤。

欢迎留言和我分享,也欢迎你在留言区写下今天的学习笔记。你可以点击“请朋友读”,把今天的内容分享给你的好友,和他一起精进。